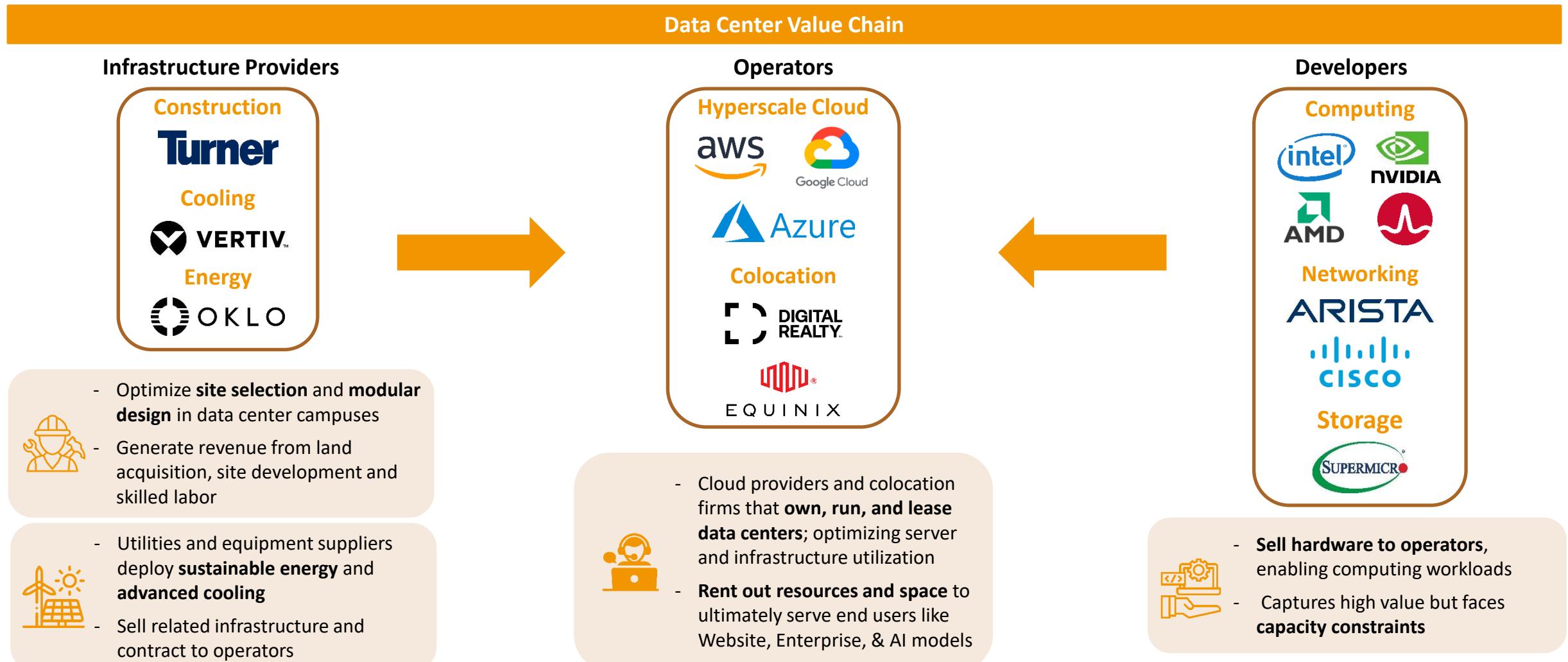


Data Centers in the US

VP: Leo Chen


George Huang, Molly Liu, Fiona Shen

Agenda

Data Center Ecosystem Overview

Data centers aggregate capital, infrastructure, and technology from key industry participants across the value chain

Source: Synergy Research Group, McKinsey

The Role of Data Centers in Digital Economy

Data Centers evolved into different types to serve different customer needs

Hyperscale

Facilities span hundreds of thousands to millions of square feet, designed to support cloud service providers

Pay-as-you-go virtual infrastructure; customers access compute, storage, AI/ML, and networking **without physical hardware investment**

AI Clouds

AI workloads demand **ultra-parallel compute and bandwidth** that CPUs cannot handle

GPUs deliver **scalable training and real-time inference** through **optimized interconnects** and cooling

Lambda

CoreWeave

Crusoe

Enterprise Colocation

Enterprises rent physical space to install and operate their own IT equipment; **supply the building, power, cooling, physical security, and network access**. However, but **customers bring and own their hardware** (servers, routers, storage arrays)

Serve **organizations requiring tight hardware control** due to regulatory or privacy needs

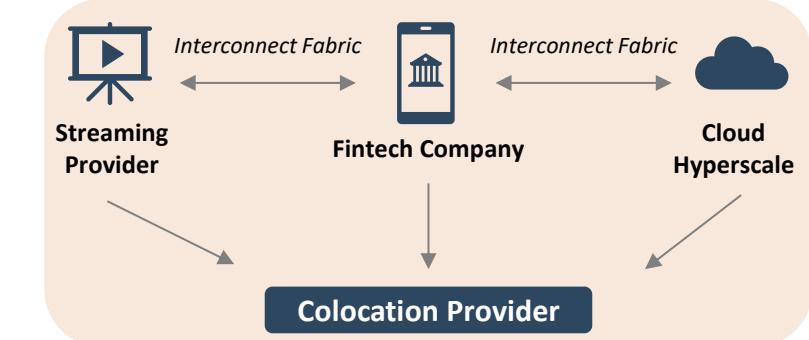
Customers must purchase, install, and manage hardware, potentially causing longer operational delays during outages

DATABANK

DIGITAL REALTY

CyrusOne

Aligned™
Adaptive Data Centers

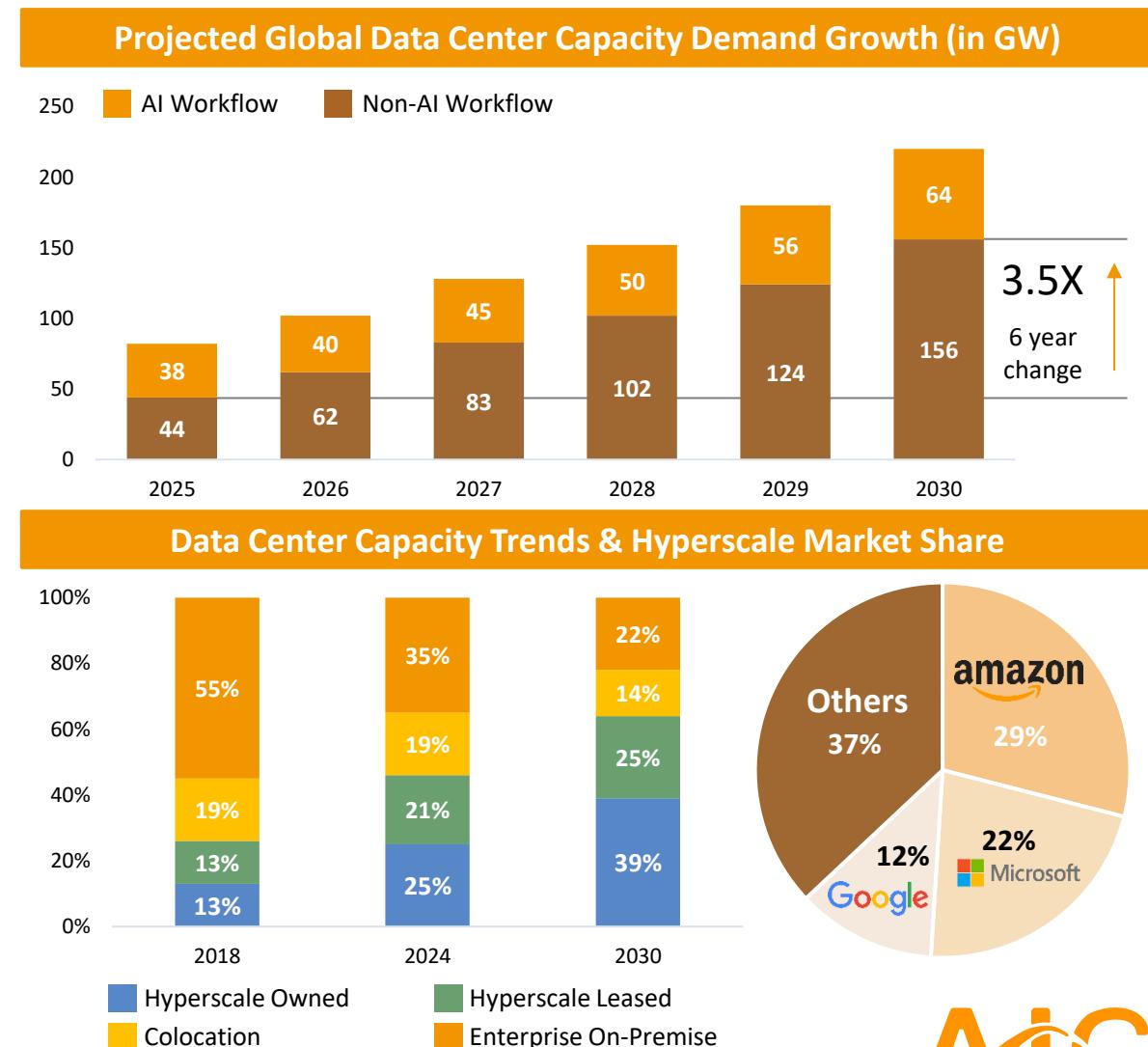

Interconnection

Private, **high-speed connections** linking different companies, networks, or clouds **within data centers**; enable direct data exchange without routing traffic over the public internet, reducing latency and security risks

Create digital ecosystems where **multiple parties exchange data** securely and rapidly

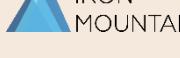
CORESITE

EQUINIX


ASCEND INVESTMENT GROUP

Industry Characteristics and Key Drivers

A high percentage of data center growth is coming from AI training & inference



Uptime Institute's Tier Classification System					
Tier	Name	Uptime	Redundancy Requirements	Infrastructure Description	Players
I	Basic Capacity	99.67%	N	Single distribution path for power and cooling	Small local/regional IT hosts, SME server rooms
II	Redundant Capacity	99.74%	N+1	Single distribution path with redundant critical components	Legacy sites or regional/older facilities
III	Concurrently Maintainable	99.98%	N+1	Multiple independent distribution paths	Mainstream Colocation Providers
IV	Fault Tolerant	99.99%	2N	Multiple physically isolated, active power and cooling system	Selected Private Sites and Government Facilities
Higher Redundancy = Higher Costs, but Greater Reliability and Premium Tenant Value					

Source: Coresite, Mckensey

Key Markets Driving Data Center Expansion

Power availability, interconnection density, and tax incentives position four core states as long-term hyperscale hubs

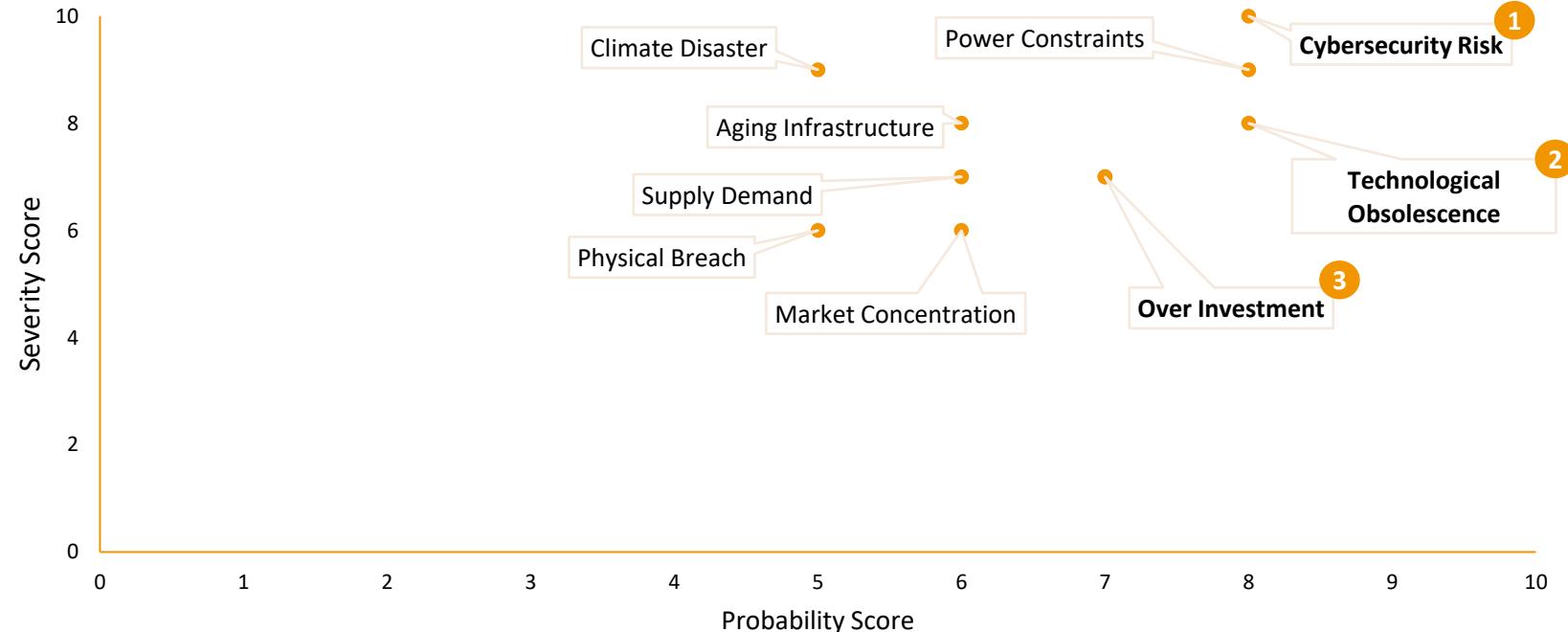
Leading Markets	Hyperscale Presence and Colocation Density	Key Players
1 Northern Virginia	<ul style="list-style-type: none">Ashburn hosts 35% of hyperscale data globally; home to over 396 data centers70%+ of East Coast enterprise networks on-ramp through Ashburn's hotelsOver 2 GW of operational Colo capacity	
2 Texas	<ul style="list-style-type: none">Dallas is second to Ashburn for hyperscale development; Southeast expanded 4x with 646 MW operational, 664 MW under constructionDallas-Fort Worth as the major interconnection in Midcontinent for banking and telecom	
3 Arizona	<ul style="list-style-type: none">Phoenix has 5 GW hyperscale projects operational/under construction; major hyperscale owners exceed 120 MW per siteQuality Job Tax Credit grants businesses \$9,000+ in income per net full-time job for 3 years	
4 Illinois	<ul style="list-style-type: none">Chicago total data center reached 1.9 GW, projected to hit 2.6 GW by 2030; hyperscale campuses dominate suburban sites10.25% sales-tax exemption program attraction	

Source: Business Insider, nvtc, azcc, McGuire Woods

Long-Term Risk Landscape for Data Center Industry

Evaluating key structural and operational risks impacting long-term stability and growth

Unit Definition


Severity Score- the magnitude of consequences

- 10: Catastrophic failure
- 7-9: Major disruption, urgent attention required
- 4-6: Meaningful but manageable
- 1-3: Low-priority risk

Probability Score- the expected frequency of the event occurring

- 10: Almost inevitable
- 7-9: Likely to happen frequently
- 4-6: Possible
- 1-3: Rare

Risk Matrix Scatterplot

- 1 Rising attack surface from interconnected systems increases potential for costly breaches
- 2 Rapid hardware and software innovation shortens asset lifecycles and devalues older facilities
- 3 Excessive capital deployment leads to supply glut, price compression, and delayed ROI

Why Data Centers Are Going Private: Flexibility, Scale, and the AI Build-Out

Private ownership unlocks higher leverage, flexible refinancing, and multiple long-term exit pathways

Take-Private Characteristics & Advantages

High Leverage Capital Stack:

Take-private deals typically use 60–75% debt backed by long-term hyperscaler leases, funded through syndicated loans, infra credit, and co-investment equity

Refinancing Agility:

Sponsors later refinance via ABS, CMBS, or sale-leasebacks to cut costs and recycle capital for expansion

Structural Flexibility (PropCo/OpCo)

Separating real estate (PropCo) from operations (OpCo) attracts specialized capital and optimizes risk allocation.

Scale & Strategic Rationale

Portfolio financing and reinvestment freedom bypass the 90% REIT dividend constraint, enabling faster hyperscale AI buildouts.

Case Study: KKR & GIP Acquisition of CyrusOne

Transaction Overview

- ❖ **Closed:** March 25, 2022
- ❖ **Buyers:** KKR and Global Infrastructure Partners (Blackrock)
- ❖ **Target:** CyrusOne Inc. (NASDAQ: CONE), a global data center REIT headquartered in Dallas

Deal Type & Value

- ❖ **Transaction Type:** Take-private leveraged buyout (LBO)
- ❖ **Total Enterprise Value:** \$15 billion (including debt)
- ❖ **Purchase Price:** \$90.50 per share (25% premium to unaffected stock price)
- ❖ **Valuation Multiples:** ~25–26x 2021E EBITDA and ~23x 2022E EBITDA

Financing Structure

- ❖ **Equity Financing:** KKR invested through KKR Global Infrastructure Investors IV (\$15B) and KKR Real Estate Partners Americas III (\$4.3B) funds. GIP invested via GIP IV Fund (\$22B).
- ❖ **Debt Financing:** Combination of senior secured loans and bond issuance from top-tier lenders (Not disclosed)

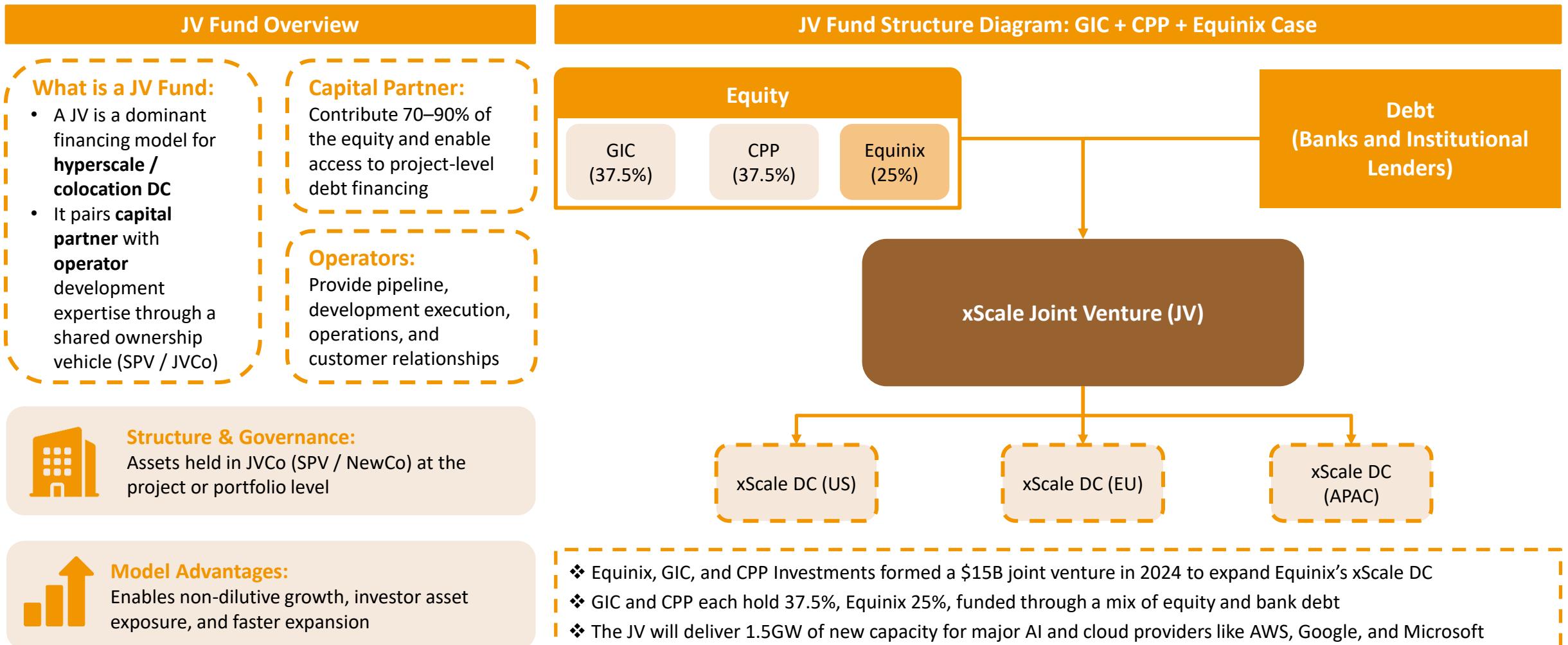
Exit Rationale

IPO Re-listing:

Possible when AI infrastructure valuations support re-entry into public markets.

Securitization Recaps:

Sponsors use ABS or CMBS structures for partial exits and capital recycling.



Secondary Buyout:

Most common route — e.g., Aligned Data Centers' \$40B sale to AI Infrastructure Partnership.

How JV Capital Structures Enable Hyperscale Expansion

JV structure unlocks capacity growth by pairing institutional capital with operator development expertise and execution

How Data Centers Generate Revenue (Wholesale Colocation Model)

Base Rent and Interconnection Revenue Breakdown

Revenue								
Base Rent Revenue								
Tenant	IT Load (MW)	Lease Start	Ramp Start	Ramp Utilization	Rent (\$/kW/month)	Year 1 Rent	Year 2 Rent (2% Escalator)	Year 3 Rent (2% Escalator)
Tenant A – Hyperscaler	12	Pre-lease (Year 0)		Year 1 70% → 90% → 95%	\$176.50	\$17,791,200	\$23,331,888	\$25,120,666
Tenant B – AI Cloud	6	Year 2		Year 2 70% → 90%	\$176.50	\$0	\$8,895,600	\$11,665,944
Tenant C – Enterprise	2	Year 1		Year 1 70% → 90% → 95%	\$176.50	\$2,965,200	\$3,888,648	\$4,186,778
CAPACITY MAX:								
Rental Income	20 MW	–	–	–	–	\$20,756,400	\$36,116,136	\$37,108,992
Meet-me-room/Interconnection Revenue								
Tenant	IT Load (MW)	Interconnection /MW	Total Interconnection Ports	Price (\$/Port/month)	MMR Revenue (Y1)	MMR Revenue (Y2)	MMR Revenue (Y3)	
Tenant A – Hyperscaler	12	5	60	\$300.00	\$216,000	\$216,000	\$216,000	
Tenant B – AI Cloud	6	8	48	\$300.00	\$172,800	\$172,800	\$172,800	
Tenant C – Enterprise	2	12	24	\$300.00	\$86,400	\$86,400	\$86,400	
MMR Income	20 MW	–	132 ports	–	\$475,200	\$475,200	\$475,200	
Year 1 Year 2 Year 3								
Total Revenue	\$21,231,600	\$36,591,336	\$37,584,192					

Pricing Structure

Leasing priced by power, not sq ft	\$/MW/month
Take-or-pay contracts	pays for full contracted power
Long-term leases	5–15 years
Built-in rent growth	1–5% annual rent escalators
Phased capacity delivery	↓ upfront capex, aligns ramp

Revenue Components

Base Rent
= (Delivered MW × Utilization × 1,000 kW/MW) × (\$/kW/mo) × 12 months × (1 + escalator)^t
Meet-me-room/Interconnection
70% -90 % EBITDA Margin → the most profitable part
= # per MW × \$/conn port × months
Recurring fees for network connectivity → ecosystem locks in

How Data Centers Generate Revenue (Wholesale Colocation Model)

Free Cash Flow and Power Pass-Through Economics

Power Cost Calculation (rebill to tenants — nets ~ \$0)							
Tenant	IT Load (MW)	Ramp Utilization	PUE	Power Price (\$/kWh)	Power Revenue (Y1)	Power Revenue (Y2)	Power Revenue (Y3)
Tenant A – Hyperscaler	12	70% → 90% → 95%	1.35	\$0.08	\$7,947,072	\$10,217,664	\$10,785,312
Tenant B – AI Cloud	6	— → 70% → 90%	1.35	\$0.08	\$0	\$3,973,536	\$5,108,832
Tenant C – Enterprise	2	70% → 90% → 95%	1.35	\$0.08	\$1,324,512	\$1,702,944	\$1,797,552
Total Power Cost	20 MW	—	—	—	\$9,271,584	\$15,894,144	\$17,691,696

Power Cost Calculation

$$= \boxed{\text{IT MW}} \times \boxed{\text{Util}} \times \boxed{1000} \times \boxed{\text{hrs/yr}} \times \boxed{\text{PUE}} \times \boxed{\$/kWh}$$

Free Cash Flow Build – Wholesale Data Center Model				
	Year 1	Year 2	Year 3	
Revenue				
Base Rent Revenue	\$20,756,400.00	\$36,116,136.00	\$37,108,992.00	
MMR / Cross-Connect Revenue	\$475,200.00	\$475,200.00	\$475,200.00	
Total Revenue	\$21,231,600.00	\$36,591,336.00	\$37,584,192.00	
COGS				
Power Expense (rebill)	-\$9,271,584.00	-\$15,894,144.00	-\$17,691,696.00	
Less: Power Rebill to Tenants	\$9,271,584.00	\$15,894,144.00	\$17,691,696.00	
Repairs & Maintenance (~3%)	-\$636,948.00	-\$1,097,740.00	-\$1,127,526.00	
Property Tax & Insurance (~5%)	-\$1,061,580.00	-\$1,829,567.00	-\$1,879,210.00	
Total COGS	-\$1,698,528.00	-\$2,927,307.00	-\$3,006,736.00	
Gross Profit	\$19,533,072.00	\$33,664,029.00	\$34,577,456.00	
Operating Expenses (SG&A)				
Labor & Operations (~20%)	-\$4,246,320.00	-\$7,318,267.00	-\$7,516,838.00	
Corporate SG&A (~10%)	-\$2,123,160.00	-\$3,659,134.00	-\$3,758,419.00	
Total SG&A	-\$6,369,480.00	-\$10,977,401.00	-\$11,275,257.00	
EBITDA	\$13,163,592.00	\$22,686,628.00	\$23,302,199.00	
EBITDA Margin	62%	62%	62%	
CapEx & Free Cash Flow				
Maintenance CapEx (2.5% of Core Rev)	-\$530,790.00	-\$914,783.00	-\$939,605.00	
Growth CapEx (\$8M/MW Delivered)	\$112,000,000.00	-\$48,000,000.00	\$0.00	
Free Cash Flow (Post-Growth CapEx)	-\$99,367,198.00	-\$26,228,155.00	\$22,362,595.00	

Wholesale Cash Flow Economics

Power is pass-through

Excluded from margin

High operating leverage

45 – 55 % EBITDA margin

Negative FCF during build years Due to Growth Capex

FCF inflects as utilization ramps and Capex drops

EV/EBITDA – Market Benchmark

- Depreciation/CapEx distort net income
- Reflects recurring operating cash
- Long-term leases = stable value

 ~23x – 26x
EQUINIX

 ~21x – 24x
DIGITAL REALTY

Q&A